人民網>>人民創投

從信息社會邁向智能社會(開卷知新)

高 文 黃鐵軍

2020年02月18日08:49  來源:人民網-人民日報

  制圖:蔡華偉

  人工智能(AI)是指在機器上實現類似乃至超越人類的感知、認知、行為等智能的系統。與人類歷史上其他技術革命相比,人工智能對人類社會發展的影響可能位居前列。人類社會也正在由以計算機、通信、互聯網、大數據等技術支撐的信息社會,邁向以人工智能為關鍵支撐的智能社會,人類生產生活以及世界發展格局將由此發生更加深刻的改變。

  人工智能分為強人工智能和弱人工智能。強人工智能,也稱通用人工智能,是指達到或超越人類水平的、能夠自適應地應對外界環境挑戰的、具有自我意識的人工智能。弱人工智能,也稱狹義人工智能,是指人工系統實現專用或特定技能的智能,如人臉識別、機器翻譯等。迄今為止大家熟悉的各種人工智能系統,都隻實現了特定或專用的人類智能,屬於弱人工智能系統。弱人工智能可以在單項上挑戰人類,比如下圍棋,人類已經不是人工智能的對手了。

  人工智能發展的基本思想和技術路徑有三種

  人工智能研究工作肇始於20世紀40年代,但其完整概念在1956年才正式登上歷史舞台,在美國達特茅斯學院舉行的“人工智能夏季研討會”上提出。這個研討會的主題就是用機器來模仿人類學習以及其他方面的智能,推進了人工智能起起伏伏、螺旋發展的歷程。

  第一個階段,1956—1976年,基於符號邏輯的推理証明階段。這一階段的主要成果是利用布爾代數作為邏輯演算的數學工具,利用演繹推理作為推理工具,發展了邏輯編程語言,實現了包括代數機器定理証明等機器推理決策系統。但在人工智能理論與方法工具尚不完備的初期階段,以攻克認知作為目標顯然不切實際,人工智能研究逐步從高潮進入低谷。

  第二個階段,1976—2006年,基於人工規則的專家系統階段。這個階段的主要進展是打開了知識工程的新研究領地,研制出專家系統工具與相關語言,開發出多種專家系統,比如故障診斷專家系統、農業專家系統、疾病診斷專家系統、郵件自動分揀系統等等。專家系統主要由知識庫、推理機以及交互界面構成,其中,知識庫的知識主要由各領域專家人工構建。然而,知識僅靠專家的手工表達實現,終不免挂一漏萬,使得專家系統無法與人類專家與時俱進的學習能力相匹配,人工智能研究第二次進入瓶頸期。

  第三個階段,2006年至今,大數據驅動的深度神經網絡階段,也是深度學習大行其道的時期。人工神經網絡的發展,隨著人工智能的發展起起伏伏。初期人們對其可以模擬生物神經系統的某些功能十分關注,但是對復雜網絡的學習收斂性、健壯性和快速學習能力一直難以把握,直到上世紀80年代反向傳播算法的發明和90年代卷積網絡的發明,神經網絡研究取得重要突破。深度神經網絡方法走到前台,開啟了人工智能新階段。

  自誕生以來,人工智能發展的基本思想和技術路徑總的來說有三種。

  第一種路徑是符號主義或者說邏輯學派,形式邏輯是其理論基礎,主張人工智能應從智能的功能模擬入手,認為符號是智能的基本元素,智能是符號的表征和運算過程。前述第一個階段和第二個階段中,符號主義都是主導思想。

  第二種路徑是連接主義或者說神經網絡學派,發源於上世紀40年代,強調智能活動是由大量簡單(神經)單元通過復雜連接后並行運行的結果。其基本思想是:既然人腦智能是由神經網絡產生的,那就通過人工方式構造神經網絡,再通過訓練產生智能。人工神經網絡是對生物神經網絡的抽象和簡化。80年代神經網絡的興盛和近年來興起的深度學習網絡,都是包含多層神經元的人工神經網絡。

  第三種路徑是行為主義或者說控制學派,又稱進化主義。這個學派在上世紀80年代末、90年代初興起,思想源頭是上世紀40年代的控制論。控制論認為,智能來自智能主體與環境以及其他智能主體相互作用的成功經驗,是優勝劣汰、適者生存的結果。

  機器學習是未來方向,將人類從重復性勞動中解放出來

  機器學習是上世紀80年代中期發展起來的人工智能新方向。機器學習研究機器怎樣模擬或實現人類的學習行為,以獲取新的知識或技能,或者根據環境自適應地調整對策。機器學習可以讓機器通過對經驗進行“歸納”和“推理”而實現自動改進。

  目前,機器學習仍然是人工智能研究的熱點之一,包括深度學習的可解釋性和可信性,增強智能系統的自學習和自適應能力,以及無監督學習、多模態協同學習、強化學習、終生學習等新的機器學習方法。另外,考慮到數據安全和隱私保護,在數據加密或者部分加密的情況下如何學習,也是重要研究方向之一。在深度學習浪潮推動下,人工智能其他研究方向也在加速發展,包括機器感知、模式識別與數據挖掘、自然語言處理、知識表示與處理、智能芯片與系統、認知與神經科學啟發的人工智能、人工智能和其他學科的交叉等。

  中國是世界上人工智能研發和產業規模最大的國家之一。雖然我們在人工智能基礎理論與算法、核心芯片與元器件、機器學習算法開源框架等方面起步較晚,但在國家人工智能優先發展策略、大數據規模、人工智能應用場景與產業規模、青年人才數量等方面具有優勢。

  中國的人工智能發展,挑戰與機遇同在,機遇大於挑戰。盡管是后來者,但我們市場規模大,青年人多,奮斗精神強,長期來看更有優勢。如果說18世紀中葉蒸汽機帶來第一次工業革命,持續了100年﹔19世紀中葉電力帶來第二次工業革命,持續了100年﹔20世紀中葉計算機與通信帶來第三次工業革命,到現在持續了70多年﹔我們可以預見,本世紀中葉前后人工智能可能會帶來下一次工業革命,影響百年。當然,現在人工智能技術的儲備還遠沒有達到開啟智能時代的量級,還需要持續積累和創新。現在的計算機體系結構,還無法滿足實現強人工智能的需求。未來可能的突破方向包括人工智能基礎理論與算法、類腦計算、生物計算、量子計算等。

  其影響不僅關系國家發展,而且關系億萬勞動者日常生活。以深度學習為代表的人工智能技術高速發展並廣泛應用,正在深刻改變人類社會生活的方方面面。產業界從提高效率、降低成本等角度,積極採用人工智能技術解決各種應用問題,包括智能機器人、智能制造、智能監控、無人駕駛、自動問答、醫療診斷、智能家居、政務法務等,為人類帶來福祉。

  從就業角度來看,越來越多的超市、銀行、餐館開始使用機器服務,甚至律師、証券分析師等高知識含量工作也可能被機器人取代,這給勞動者就業帶來挑戰。人工智能的應用必然會提高勞動生產率,正如第一次工業革命期間,機器的應用雖然減少了傳統輕工業就業崗位,但是也創造了更多新興產業就業崗位。人工智能也一樣,隨著它的發展,將會產生很多新的工作崗位,只是對技能的要求與傳統崗位不同。因此,隨著人工智能的推進,教育培訓體系也應該根據就業結構變化而積極調整,加快推進產業升級中的職業轉崗培訓。

  人工智能把我們從簡單重復的勞動中解放出來,更有利於人類充分挖掘自己的智能潛力。面對即將到來的智能社會,我們應該以積極態度擁抱變化。與其擔憂工作被搶走,不如與機器“共勉”,機器尚在持續學習,我們人類難道不應該更加努力學習、終身學習嗎?

  (作者高文為北京大學教授、中國工程院院士,黃鐵軍為北京大學教授)

  推薦讀物:

  1.《人工智能導論》:李德毅主編﹔中國科學技術出版社出版。

  全面覆蓋人工智能的基本概念和重要方向,圖文並茂,通俗易懂。

  2.《人工智能全球格局:未來趨勢與中國位勢》:國務院發展研究中心國際技術經濟研究所等著﹔中國人民大學出版社出版。

  客觀審視各國政府和科技公司的人工智能布局,講述以科技創新領跑世界的中國故事。

  3.《AI的25種可能》:[美]約翰·布羅克曼編著﹔浙江人民出版社出版。

  25位著名專家從不同角度解讀人工智能,對專業人員和大眾讀者都具有啟發性。

(責編:王震、陳鍵)

深度原創

特別策劃

    第二屆內容科技大賽總決賽 人民戰“疫”內容科技大賽 首屆人民網內容科技大賽總決賽 人民網內容科技創業創新長三角決賽
二維碼